An inverse problem to estimate an unknown order of a Riemann–Liouville fractional derivative for a fractional Stokes’ first problem for a heated generalized second grade fluid
نویسندگان
چکیده
In this paper, we propose a numerical method to estimate the unknown order of a Riemann–Liouville fractional derivative for a fractional Stokes’ first problem for a heated generalized second grade fluid. The implicit numerical method is employed to solve the direct problem. For the inverse problem, we first obtain the fractional sensitivity equation by means of the digamma function, and then we propose an efficient numerical method, that is, the Levenberg–Marquardt algorithm based on a fractional derivative, to estimate the unknown order of a Riemann–Liouville fractional derivative. In order to demonstrate the effectiveness of the proposed numerical method, two cases in which the measurement values contain random measurement error or not are considered. The computational results demonstrate that the proposed numerical method could efficiently obtain the optimal estimation of the unknown order of a Riemann– Liouville fractional derivative for a fractional Stokes’ first problem for a heated generalized second grade fluid.
منابع مشابه
A Neural Network Method Based on Mittag-Leffler Function for Solving a Class of Fractional Optimal Control Problems
In this paper, a computational intelligence method is used for the solution of fractional optimal control problems (FOCP)'s with equality and inequality constraints. According to the Ponteryagin minimum principle (PMP) for FOCP with fractional derivative in the Riemann- Liouville sense and by constructing a suitable error function, we define an unconstrained minimization problem. In the optimiz...
متن کاملNew operational matrix for solving a class of optimal control problems with Jumarie’s modified Riemann-Liouville fractional derivative
In this paper, we apply spectral method based on the Bernstein polynomials for solving a class of optimal control problems with Jumarie’s modified Riemann-Liouville fractional derivative. In the first step, we introduce the dual basis and operational matrix of product based on the Bernstein basis. Then, we get the Bernstein operational matrix for the Jumarie’s modified Riemann-Liouville fractio...
متن کاملNumerical solution for boundary value problem of fractional order with approximate Integral and derivative
Approximating the solution of differential equations of fractional order is necessary because fractional differential equations have extensively been used in physics, chemistry as well as engineering fields. In this paper with central difference approximation and Newton Cots integration formula, we have found approximate solution for a class of boundary value problems of fractional order. Three...
متن کاملA spectral method based on the second kind Chebyshev polynomials for solving a class of fractional optimal control problems
In this paper, we consider the second-kind Chebyshev polynomials (SKCPs) for the numerical solution of the fractional optimal control problems (FOCPs). Firstly, an introduction of the fractional calculus and properties of the shifted SKCPs are given and then operational matrix of fractional integration is introduced. Next, these properties are used together with the Legendre-Gauss quadrature fo...
متن کاملSolution to time fractional generalized KdV of order 2q+1 and system of space fractional PDEs
Abstract. In this work, it has been shown that the combined use of exponential operators and integral transforms provides a powerful tool to solve time fractional generalized KdV of order 2q+1 and certain fractional PDEs. It is shown that exponential operators are an effective method for solving certain fractional linear equations with non-constant coefficients. It may be concluded that the com...
متن کامل